Krylov Space Methods on State - Space Control
نویسنده
چکیده
We give an overview of various Lanczos/Krylov space methods and how they are being used for solving certain problems in Control Systems Theory based on state-space models. The matrix methods used are based on Krylov sequences and are closely related to modern iterative methods for standard matrix problems such as sets of linear equations and eigenvalue calculations. We show how these methods can be applied to problems in Control Theory such as controllability, observability and model reduction. All the methods are based on the use of state-space models, which may be very sparse and of high dimensionality. For example, we show how one may compute an approximate solution to a Lyapunov equation arising from discrete-time linear dynamic system with a large sparse system matrix by the use of the Arnoldi Algorithm, and so obtain an approximate Grammian matrix. This has applications in model reduction. The close relation between the matrix Lanczos algorithm and the algebraic structure of linear control systems is also explored.
منابع مشابه
CSSP 13:733-758, 1994 Krylov Space Methods on State-Space Control Models
We give an overview of various Lanczos/Krylov space methods and how they are being used for solving certain problems in Control Systems Theory based on state-space models. The matrix methods used are based on Krylov sequences and are closely related to modern iterative methods for standard matrix problems such as sets of linear equations and eigenvalue calculations. We show how these methods ca...
متن کاملParallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver
Large scale optimization of systems governed by partial differential equations (PDEs) is a frontier problem in scientific computation. The state-of-the-art for such problems is reduced quasi-Newton sequential quadratic programming (SQP) methods. These methods take full advantage of existing PDE solver technology and parallelize well. However, their algorithmic scalability is questionable; for c...
متن کاملKrylov Subspace Methods in Linear Model Order Reduction: Introduction and Invariance Properties
In recent years, Krylov subspace methods have become popular tools for computing reduced order models of high order linear time invariant systems. The reduction can be done by applying a projection from high order to lower order space using bases of some subspaces called input and output Krylov subspaces. One aim of this paper is describing the invariancies of reduced order models using these m...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملConvergence of the Iterative Rational Krylov Algorithm
The iterative rational Krylov algorithm (IRKA) of Gugercin et al. (2008) [8] is an interpolatory model reduction approach to the optimal H2 approximation problem. Even though the method has been illustrated to show rapid convergence in various examples, a proof of convergence has not been provided yet. In this note, we show that in the case of state-space-symmetric systems, IRKA is a locally co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994